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Abstract

By simplifying the direct interaction approximation (DIA) for turbulent shear flow,

time dependent formulas are derived for the Reynolds stresses which can be included in two

equation models. The Green's function is treated phenomenologically, however following

Smith and Yakhot (Theor. Comput. Fluid Dyn., 4, 197 (1993)), we insist on the short

and long time limits required by DIA. For small strain rates, perturbative evaluation

of the correlation function yields a time dependent theory which includes normal stress

effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-

Rodi model is obtained by replacing the Green's function by its long time limit. Eddy

damping corrections to short time behavior initiate too quickly in this model; in contrast,

the present theory exhibits strong suppression of eddy damping at short times. A time

dependent theory for large strain rates is proposed in which large scales are governed

by rapid distortion theory while small scales are governed by Koimogorov inertial range

dynamics. At short times and large strain rates, the theory closely matches rapid distortion

theory, but at long times it relaxes to an eddy damping model.



I. Introduction

D. C. Leslie 1 proposed solving the direct interaction approximation (DIA) equations

for shear turbulence 2 by treating the shear terms as a weak perturbation of an isotropic

turbulent background state. At lowest order, the corresponding perturbation series yields a

linear relation between Reynolds stress and strain rate in which the eddy viscosity depends

only on the correlation function and response function of the DIA theory of isotropic

turbulence. Because DIA is a time dependent theory, this approach leads naturally to a

time dependent theory of shear turbulence. The goal of this paper is to develop these

time dependent theories explicitly, incorporating some recent observations of Smith and

Yakhot s on the short time and long time behavior of turbulence. In contrast, Leslie's

main concern was the long time, steady state limit of the theory. Evaluating the second

order terms in Leslie's expansion leads to a time dependent generalization of Yoshizawa's 4

nonlinear eddy viscosity representation of turbulence in which the Reynolds stresses are

quadratic functions of the mean velocity gradient, s Finally, the restriction of Leslie's theory

to weak shear is removed by summing the perturbation series to all orders. For simple

shear flow in which OUi/Ozj = S_i16j2_ the summation is accomplished with the help of

rapid distortion theory (RDT). 6

The present theory of weakly sheared turbulence can be compared to a standard

phenomenological time dependent model, the Launder- Reece-Rodi (LRR) Reynolds stress

transport model. 7 From the viewpoint of the present theory, the LRR model arises by

incorrectly replacing the DIA Green's function by its long time limit. This simplification

misrepresents the short time response of turbulence to shear. An important consequence is

that eddy damping corrections to short time RDT behavior initiate too quickly in the LRR

model. This causes excessive growth of turbulence kinetic energy at short times in highly

strained homogeneous shear flow. The present theory exhibits a strong suppression of

eddy damping at short times. It therefore also predicts a much wider frequency range over

which RDT correctly describes oscillating shear flow: in the present theory, the corrections

to RDT are of order w -2 where w is the oscillation frequency, but are of order w -1 for the

LRR model. This may explain the success of RDT based models in computing oscillating

flOWS. 8

The present proposal for strongly sheared turbulence leads to a "two scale" picture of
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shear turbulence in which large scales are rapidly distorted while small scales are governed

by Kolmogorov inertial range dynamics. The theory can be described either as RDT with

generalized eddy damping, or as RDT with a modified total strain.The introduction of a

phenomenological modified total strain to improve the agreement of RDT with experiments

has been advocated in the RDT literature; s'9 in the present theory, the modified total strain

is determined by the Green% function of isotropic turbulence. This theory is intrinsically

time dependent; however, it can be simplified by assuming that turbulent states at any

str_ rate can be long time limits. Then for simple shear S -- 0U1/Üz2 held for infinite

time, the theory formally reduces to a relation

K 2
n2 =

g

with 1° _ = SK/e. There are analogous formulas for the normal stresses. Phenomenological

expressions of this type have been proposed, la but in the present theory, C_(r]) is exactly

determined by RDT.

II. Formulation of the Theory

A. Simplified DIA Analysis of Shear Turbulence

Leslie's theory of shear turbulence 1 can be derived from the generalized Langevin

model for isotropic turbulence n

a f/(-_ + uk 2) ui(k,g) + ds rl(k,t,s ) zti(k,s) = fi(k,t) (1)

in which ui is the random velocity field, r/(k,_, s) is a deterministic eddy damping factor,

and f is a random force. A Fourier space representation is used and k 2 = k • k. The

properties of _l(k,t,s) and f are given in detail in Ref. 12. They depend on the two

time correlation function of the velocity field, so that the linearity of this equation is only

apparent. Eq. (1) is also a generic model in the statistical mechanical theory of transport

coefficients, is DIA gives the exact correlation function for a suitable model of this type. n

Suppose that some external agency, such as shear or buoyancy forces, is present. We

will generalize Eq. (1), representing the effect of the external agency by adding a suitable

force Fi to the right side:

a f[(-_ + uk 2) ui(k,t) + ds rl(k,t,s ) ui(k,s) = fi(k,t) + Fi(u,(k,t)) (2)
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This general model, which can perhaps be attributed to Leslie, is a simplification for

each force F of a corresponding complete DIA theory. It simplifies the dynamics by

ignoring any effects of the external agency on either the eddy damping or the random

• force; in particular, the eddy damping always remains isotropic. Except for some tentative

proposals of Tchen 14 and the suggestions of Cambon et alls such effects have been little

investigated. Ignoring them amounts to treating shear turbulence, for example, as the

outcome of straining by large scales acting against isotropic eddy damping. Although

this picture is oversimplified, it is a plausible starting point and should capture some of

the physics of shear flow. Modifying the damping in the region of strong effects of F may

overcome some of the limitations of the model. 16 In any case, a more complete investigation

based on a full DIA analysis will be considerably more difficult.

where

With these assumptions, the model equation for shear turbulence is

DtDui(k, _) + t",1o['ds rl(k,t,s ) ui(k, s) = fi(k,t) + Sip(k,g)up(k,g) (3)

Sire = -Aim + 2k-ZkikpAprn + 6imk,A,rO/Okr

Aim = OUi/Oz 

Note that the viscous term of Eq. (2) has been ignored in Eq. (3). The shear terms

result a7 from Reynolds averaging the Navier Stokes Equations with a mean velocity field

Ui = Aij;ej. Reynolds averaging also introduces the convective derivative in Eq. (3) which

replaces the time derivative in Eq. (2). Since convection by the mean flow does not affect

eddy damping or straining, this effect will be ignored in what follows. Closely related

models have been proposed and investigated by Cambon et alas in the context of EDQNM

especially for rotational effects. Since our goal is to derive single point models rather than

to study spectral dynamics, Leslie's much simpler formulation seems adequate.

Eq. (3) can be rewritten in terms of a Green's tensor or response tensor

Gij(k,_,s) = G(k,t,s)Pii(k)

where

Pie(k) = 6ij - kikjk -2
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as

fo _
ui(k,t) = ds G(k,t,s) [fi(k,s) + Piq(k)S_p(k,s)uq(k,s)]

where G satisfies the integrodifferential equation

OG(k,t,s)/& + f_

(4)

dr ,(k,t,r) o(k,r,s) = o (5)

and the conditions

G(k, s, s) = 1

G(k,t,s) = 0 for t < s (6)

In what follows, the condition Eq. (6) on the Green's function will always be understood.

Moreover, in order to avoid additional notation, the symbol G will be used to denote

different Green's functions dependent on different numbers of arguments. Eq. (3) will be

applied to derive Reynolds stress models, however it should be possible to deduce K and

transport equations from it as well.

B. Relation to RDT

Eq. (3) with both the random force and the eddy damping terms neglected is just

RDT. 6 An approximate condition that RDT apply is therefore that

'Tl(k,t,s)ds (Apqapq) a/2 (7)<<

Because r/models eddy damping due to nonlinear interaction, this condition agrees with

the usual idea that RDT applies when the shear dominates nonlinearity. At short times,

the left side of Eq. (7) is O(t); therefore, the short time response is always governed by

RDT in this theory. At finite times, Eq. (7) states a scale dependent criterion for the

applicability of RDT which will be discussed later.

In the RDT limit with _7(k,t,s) = O, Eqs. (5),(6) become simply G(k,t,s) = 1. Thus,

a second criterion for the applicability of RDT is

[G(k,t,s) - II << 1 (s)



In what follows, eddy damping will be described by G rather than by 7?, and Eq. (4) will

be used as the basis of the theory.

C. Stationary Green's Functions

The time stationary case

G(k,t,,) = C(k,_-,) (9)

should be characterized by universal inertial range forms with Kolmogorov similarity

(10)

No attempt to calculate the time dependent function G(k,t- s) theoretically has yet

succeeded. DIA itself is inconsistent TM with the Kolmogorov scaling of Eq. (10); the

Lagrangian modification 19 of DIA which restores Kolmogorov scaling does not give sat-

isfactory predictions for the long time behavior of time correlations. 16 At this time, it is

therefore necessary to postulate functional forms for G(_). However, Smith and Yakhot

observed 3 that the short and long time limits of G alone have important consequences. It

follows from Eq. (5) that at short time separations,

G(k,_- s) = 1+ o((_ - s)_)for (t - s) ~ 0 (11)

and it is generally believed that at long time separations, the function G(_) decays expo-

nentially,

G(k,t- s) ~exp(--CD_) for (t - s)~ oo (12)

with CD a universal constant: in the Yakhot-Orszag theory, s° CD = .49. This limit

corresponds to eddy damping. We will follow Smith and Yakhot 3 by leaving the functional

form of G(_) unspecified, but insisting on the limits in Eqs. (11),(12).

An important observation is that the long time limit, Eq. (12), does not satisfy the

short time limit Eq. (11). In fact, reference to Eq. (5) shows that the long time limit is

defined by the singular damping function

,7(k,t,,) = c_/_k_/_6(_- ,) (13)



which "Markovianizes" Eq. (3) as in Kraichnan's test field model. 12 It will be shown later

that the LRR stress transport model also assumes Markovian eddy damping.

A consequence of the short and long time limits follows from the definition of _ in Eq.

(10): at any fixed nonzero (t - s), _ is small for large scales and large for small scales. Eqs.

(8),(10) imply that sufficiently large scales are governed by the short time limit, RD T, while

sufficiently small scales are governed by the long time limit, inertial range eddy damping.

This observation suggests a "two-scale" theory of shear turbulence.

D. Nonstationary Green's Functions

For completely general conditions, the time dependence of G(k,t, s) can only be found

from DIA. In the present simplified theory, the time dependence must be postulated in-

stead, recognizing that some form of universality is indispensable in turbulence modeling.

This will restrict the applicability of the theory, but such restrictions are inevitable in

any case: there are time dependent problems accessible to DIA, such as the relaxation of

turbulence with strong k space anisotropy, or the generation of a Kolmogorov spectrum

from an arbitrary initial spectrum, which cannot be usefully described at the single point

level.

Let the inertial range be characterized by its time dependent dissipation rate e(t) and

inverse integral scale ko(t). In the Yakhot-Orszag theory, s° k0 is defined so that

K(t) = _:_) E(k,t)dk

where K denotes the turbulence kinetic energy; for the Kolmogorov spectrum written as

E = CKe21Sk -5/3 for k > k0 (14)

.where CK is the Kolmogorov constant, K and k0 are related by

K(t) = _CKe(t)2/Sko(Q -2/s (15)

Either pair of functions e(t) and ko(t) or e(t) and K(t) defines a time dependent inertial

range: the second pair wiU be assumed to be known from the solution of a two equation

model.
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Define the frequencies

e(k,t / = _1/3(0k2/_ for k _ k0(0

e(O = _(O/K(O

A universal time dependent damping function can be postulated by assuming that a sta-

tionary Green's function G(_) satisfying the limits Eqs. (11),(12)is known, and replacing

the similarity variable _ = 8(t - s) of Eq. (10) by the generalization f: 8 dr, so that

f'= a( O(k,r)dr) (16)

This postulate has two consistency properties: it reduces to the stationary form when the

inertial range is time independent, and it is exact for the singular case Eq. (13) in which

= e

A simpler formulation, closer in spirit to single point modeling, is to treat damping

as scale independent by setting G(/¢, t, s) = G(t, s) only. In this case, the damping is due

to the action of the inertial range as a whole. It will be convenient to call this type of

model a global damping model. The appropriate similarity variable in the stationary case

is (t - s)®. The short time limit is

G(t-s)=l+O((t-s) 2) for(t-s),-_O (17)

and the long time limit is

G(t - s) ,._ e -cRc'/K)O-') for (t - s) ,-_ oo (18)

where CR is another universal constant: in the Yakhot-Orszag theory, 2° CR _ 1.58. As-

suming that G(t- s) satisfying Eqs. (17),(18) is known, we can define by analogy to Eq.

(16),

f'G(t,s) = G( ®(r)dr) (19)

Dropping the k dependence in Eq. (5) shows, by analogy to Eq. (13) that the long time

limit corresponds to the singular damping function

= o(,),(, - ,) (20)



Eq. (19)is exact in this case,for which G(t- s)= exp('CR(t-s)O).

III. Time Dependent Eddy Viscosity

To derive the time dependent eddy viscosity, we follow Leslie 1 and expand Eq. (4) in

powers of the mean strain rate about an isotropic background state u(°):

u = u (°) +u O) +'" (21)

We have assumed that the force f is independent of the mean strain rate; therefore, the

effect of f is absorbed entirely in the background state, and uO) is given by

ula)(k,t) = ds a(k,t,s) P,,_(k) S,_,_ (k,s) u? ) (k,s) (22)

If, corresponding to Eq. (21) the single time correlation function is expanded as

where

Q = Q(0) + QO) +...

Q_)(k,t) = < u_ 1) (k,t)u_°)(-k,t) + u_°)(k,t)u_l)(-k,t) >/6(k)

and the higher order correlations axe defined similarly, then Eq. (22) implies

Q_(k,t) = ds G(k,t,s)(-A,r + 2klk, k-2A, r)Pr,_Q(°)(k,t,s)

0 o(°)tk t s)
+(ira) + G(k,t,s)kr A_ Ok---_ "_"_' ' '

0

- a,..

(23)

(24)

9

Q(°)(k,t,s) = Q(°)(k,s)[G(k,t,s) + G(k,s,t)]

where (ira) denotes index interchange in the immediately preceding term. In view of

the isotropy of the background field, Q_°)(k, t, s) = Q(°)(k,t,s)Pij(k). The occurence of

two time correlation functions in the formula for the single time correlation function is

characteristic of DIA. The time stationary form of this equation was stated by Leslie) We

follow Smith and Yakhot 3 and assume the nonstationary fluctuation dissipation relation



A decomposition of the Reynolds stressfollowsfrom Eq. (23):

where

_-,(7)(_) f dk (")= Qij (k,_)

Note that the sign convention established here is

(25)

vii = + < uiuj >

Evaluation of the angular integrals in Eqs. (24),(25) leads to

2 a(k,t,,)k a(k,t,,)}15

where E(k, s) is the energy spectrum at time s and

(26)

Sij = Aij + Aji

We adopt the viewpoint of the Yakhot-Orszag theory 2° and evaluate Eq. (26) over

the inertial range k > k0 only using the similarity form Eq. (16) for the Green's function

and the Kolmogorov spectrum, Eq. (14). The result will have the general form

,-!._)-- ds r(t,s)S_j(s)
_3

in which the integral kernel P itself depends in a complicated manner on the evolution of

the inertial range parameters K and e for times between 0 and t. In the stationary case,

the result can be rewritten as

7' oo

K 2 fe_/K= -- dT"Si_(7"K/_)x--CK _ ,Io

4 __/. G(_./a)G,(_2/a))d,_,__/. {4_(,_/_)_ _

(27)

Recall that G here denotes the inertial range similarity form Eq. (10). Given a functional

form for G, the second integral in Eq. (27) is a universal function of the dimensionless

time variable 7".
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As Smith and Yakhot emphasize, s the universal short and long time limits for G imply

universal short and long time limits for rij(t). Namely, substituting the short time limit

for G #yen in Eq. (11) in Eq. (26) leads to

4

rq - 15 Kt Sij (28)

in agreement with Crow's 21 RDT calculation. To derive the long time limit, use the

stationary form Eq. (10) for G(k,t - s) and define constants C1 and C2 by

fo ° G(k,_)_ d_ = Ca/o

fo ° k d_ = c_./oG( k, cr) dG(k,a)/dk

Then assuming constant strain rate and substituting in Eq.

eliminate k0 in favor of K,

where

K 2

¢ij = -C_ -- Sij
g

c_ = ( 4_ 2 )/45cK
C1 C2

(26), using Eq. (15) to

There are some other useful special cases of Eq. (26). By setting G - 1, we obtain

RDT expanded to first order in the mean strain rate. The possibility of a "viscoelastic"

representation of turbulence, as in Eqs. (26),(27) was suggested by Crow 2a and others.

Crow's theory arises in the present formalism by assuming viscous damping

G(k,t,s) = e -_k2(t-°)

instead of eddy damping.

Global damping models greatly simplify these formulas while retaining the idea of

eddy damping. The global damping analog of the general nonstationary model Eq. (26) is

- ds G(t,s) 2 K(s) Sis(s) (29)

An important special case of this formula is obtained by substituting the exponential form

for G of Eqs. (18),(19); although this form does not satisfy the short time constraint Eq.

11



(17), it will connect the present theory with stress transport models. In this case, Eq. (29)

becomes

- 15/o es '

Equivalently,

.;,.(_) _ ,_,,., _ _(1) ; KSij-- --/.t.JR -K Tij

or for constant strain in simple shear in which Aij = $6i16j2

(30)

"/'12

g

2 K2 (1- ezp(--2CR -gt))S
15CR s

In the Yakhot-Orszag theory 2°, 2/15CR = C_, _ .08 exactly equals the usual eddy

viscosity constant.

Comparison with the LRR model _ requires that both convection and diffusion be

ignored: these are inhomogeneous effects extraneous to the present analysis. Writing _'iD

for the deviatoric, or anisotropic part of the stress, the simplified LRR model is

_t -- C1 _ D 4 KSij (31)K'qJ 15

D OUj OUi 2 o OUq

_. _ou, _ou, - _,,---26, -_'°u" ]
+ 6'3trip _ + rip Oz,_ 3 O=q

Solving this equation by a perturbation series in the strain rate analogous to Eq. (21),

= + +

we find that r(¢ ) satisfies Eq. (30) with 2CR = Ca. This establishes a simple connection

between the present theory and LRR, namely that to lowest order in this perturbation

theory, the LRR model is a global damping model defined by the Green's function

a(,,s) = e_ -01o(,.) d,. (32)

which does not satisfy the short time limit Eq. (17). Instead, this choice of Green's

function corresponds to the long time limit Eq. (18), to the singular eddy damping of Eq.

(20), and to Markovian damping in Eq. (3).
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The LRR model satisfies the Crow constraint on short time behavior, Eq. (28). The

short time expansion G(_ - s) _ 1 + O(t - s) of the LRR Green's function Eq. (32) implies

that corrections to the Crow constraint are of order t2_ Eq. (17) implies a correction of

order t s. Summarizing, the short time corrections to the Crow constraint axe

r-,_ t+O(t 2) LRR

r _ t + O(t s) present

r,,_ t+O(t 5) RDT °

(33)

These distinctions are important in oscillating shear flow. Consider oscillating simple shear

flow in which ,,q = OU1/Oz2 is the only nonzero mean velocity component, and let r - r12

be the shear stress. Suppose that S is oscillatory:

S = da/dt = aiwe i_

In rapidly oscillating flow, it is reasonable to ignore oscillations in K and _ and to replace

them by their time averages. Then ® = elK is constant. Damping is then described by

the stationary Green's function G((t - s)®). Then _" is given by

aiKw fo' ds s))2e

The steady state solution when w is large satisfies 22

[ ]r ,,_-4aK/15 Ao + __ + i2w2 +"" e i_°_

where
A0 = G(0) = 1

A1 = 2a(0)C'(0)e

A2 = [2G(0)G"(0) + 2G'(0) 2] $2

indicating as expected that in the limit w --* oo, the response is elastic and is governed

by RDT. In the LRR model, G'(0) ¢ 0; therefore the corrections to RDT are of order

w-1. But if G satisfies Eq. (17), then A1 = 0 and the correction to the RDT solution

depends on _-2 instead of on w-1. Moreover, the phase lag between stress and strain is

of order w -s. This may explain the success of RDT in solving high frequency oscillating

13



flows,s It appears that the LRR model will overpredict the effects of eddy damping at high

frequencies.

The corrections to RDT at short times summarized by Eq. (33 / are also important

in transient homogeneous shear flow. Eq. (33) indicates that the short time corrections in

both LRR and the present theory are associated with the initiation of eddy damping. It

is known 23 that at high strain rates, the LRR model predicts a much too rapid growth of

K. Energy growth is due to the onset of turbulence production by eddy damping. In view

of Eq. (33/, eddy damping corrections are of order t 2 in LRR, but are of order t3 in the

present theory. This strong short time suppression of eddy damping suggests that RDT

will apply in the present theory for longer times than it does in the LRR model. This may

improve the agreement with DNS studies 24 of highly strained turbulence.

IV. Second Order Analysis

Calculation of Leslie's expansion to second order is lengthy but routine.

has the form

The result

Q_)(k,t) = E I(N)[a(N)A'P(s)AJP(r) + b(N)Aip(s)ApJ(r)
I<N<6

+ c(N)Api(s)Ajptr) + d(N)Api(s)Apj(r)

+ e(N)_fijApq(s)Aqp(r) + ](N)6ijApq(s)Apq(r)] + (ij)

(33)

in which the I (N) axe integral operators

f0"1 (1) = ds G(k,t,s)

I ,/oI (2) = ds G(k,t,s

1 (3) = ds G(k,t,s)

/o'I (4) = ds G(k,_,s)

Z' i'i(5) = ds G(k,t,_)

I (6) = ds a(k,_,s)

d,- G(k,s,,.)G (k,_,,-)Q(°)(k,, .)

d_ G(k, _,r)k_ [G(k, t, _)0(°)(k,,-)]

d 2

d,. G(k,_,,.l_._[a(k,t,,.lQ(°)(k,,.)]

dr G(k,t,r)G(k,I s,r I)Q(°)(k,r)

dr G(k,t,r)k d [G(k, I s,r [)Q(°)(k,r)]

d 2

dr G(k,_,rlk2-d-_[G(k,I s,r I)Q(°)(k,r)]

(34)

14



a(N),...f (N) are the following geometric constants:

(1) (2) (3) (4) (5) (6)

and

105a (N) 27 --1 --2 19 --_ --1
2 2

105b (N) 20 6 -2 6 3 -1

105c (N) --15 --15 -2 _ _5 1
2 2

105d(N) 20 -8 -2 -22 -4 -1

105e (N) 10 24 6 3 12 3

I05/(N) --4 24 6 I0 12 3

G(k,I .,r I)= G(k,_,r) + G(k,r,.)

As in all derivations of this type 4,5,9, these constants arise from integrating even order

products kikj, .... over spheres k = constant. A useful constraint on the calculation is that

it must reduce to the rapid distortion results of Maxey 9 when G - 1. Single point models

are derived exactly as in Sect. II and will not be described explicitly.

In a global damping model, the integrals in Eq. (34) satisfy the relations

i(2) = _3i(1)

i(3) = 12i(1)

i(5) = _3I(4)

i(e) = 121(4)

and Eq. (33) reduces, after performing the wavenumber integrals, to

r}])(t) = ds G(t,s) dr a(s,r)a(t,r)K(r) x

4

{ + i-6_[S,_(_)Ajp(_)+ Sj_(_)A,_(r)]
24
105[Si.(_)A._(r)+ S.(.)A.,(r)]
32

+ _6,j[Apq(s)Aqp(r) + Apq(s)Apq(r)]}

(35)

To compare this calculation with LRR, evaluate the second order solution of Eq. (31):

/0 /0"_'(])(t) = ds act, s ) dr G(s,r)K(r) x

+ C2[S_(.)A_(_) + Sj_(_)A_(r)]

+ C3[Sil,(s)Apj(r) + Sjp(s)Ap,(r)]

15



where G is the Green's function for the LRR model, Eq. (32). The occurence of an

additional Green's function in Eq. (35), which arises from the two-time correlation, means

that at second order, the present theory does not reduce to LRR. However, as in the

discussion of shear stress, the important difference between the theories is the correction

to short time behavior: in both the LRR model and the global damping model, the normal

stresses are of order t 2 at short times. In the LRR model, the corrections are of order t 3,

whereas in a global damping model in which G satisfies the short time limit Eq. (17), the

corrections are of order t 4. Thus, the present theory resembles RDT longer in transient

homogeneous shear flow and at lower frequencies in oscillating shear flow than the LRR

model.

V. Models Valid for Large Strain Rates

The pertuxbative derivation of these models limits their applicability to moderately

strained flows. A theory valid at arbitrary strains can be derived by summing Leslie's

expansion 1 to all orders. The summation is simplest in the time stationary case which will

be considered first. In an obvious operator notation, Eq. (22) can be written as

u O) = GSu (°)

where G denotes time convolution by the (stationary) Green's function,

(Ga)(t) = (a * a)(t) - G(t - s)a(s) cIa

(only the time arguments have been shown explicitly), and S denotes the action of the

strain dependent terms. In view of Eq. (3),

u ('_) = GSu ('_-a) = (GS)'_u(°)

where operator products axe understood; therefore,

u = [I+ GS + (GS) 2 +...]u (°) (36)

and the problem is to find a useful representation for the Neumann series on the right side.

When G _-_1, G is simply time integration, which can be written

16



where H denotes the usual unit step function. In this case, the sum in Eq. (36) defines

RDT, for which the sum can be given explicitly for some important special mean velocity

gradients Aij.

Consider a global damping model G(k,t, s) = G(_, s), so that in each term of the series

in Eq. (36), the k-derivative in S does not act on G. RDT can be written as the special

case of Eq. (4),

ui(k,t) = ds H(t- s) Piq(k)Sqp(k,s)u,(k,s) (37)

Following Ref. 9, write the solution of RDT for simple shear

Aim(t) = S(t)6i16,_2

as

ui(k,t) = Mip(m(k,a(t)),a(t))up(k,O)

where a(t) is the total strain

and m is defined in Ref. 9. Define the modified velocity gradient Ai*_ by

(38)

(39)

Ai*m = X • Ai_ (40)

where componentwise convolution is understood and the function X is chosen so that

• X=G (41)

therefore

H * Ai*_ = G * Ai._ (42)

Comparing Eqs. (37), (40), and (42), it is evident that the solution of Eq. (37) with the

modified velocity gradient Ai*_ is the solution of Eq. (4) with an arbitrary Green's function

G.

The solution of Eq. (41) is

X = G' + 6 (43)
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where G' is the derivative of the stationary Green's function G(_ - s) with respect to its

argument. For simple shear, Eq. (40) reduces to

s* = x , s (44)

Therefore the solution of Eq. (4) for simple shear is the modification of Eq. (38),

ui(k,t) = Miv(m(k, ct*(t)),a*(t))uv(k,O)

where, in view of Eqs. (41),(44), a* is defined by

(45)

a* =H*S*=G*S

Explicitly,

./e/s(s) ds (46)

Eqs. (45) and (46) solve the problem of summing Leslie's perturbation theory in the special

case of simple shear, a* may be called the modified total strain.

The introduction of a phenomenological modified total strain has often been suggested

in the RDT literature s,s,9 as a way to improve the agreement between RDT and data from

flows which are not evidently rapidly distorted. The short and long time properties of Eq.

(46) are interesting from this viewpoint. At short times, G -,, 1 and Eq. (46) becomes

a* --, a --, S(0)t for t -_ 0 (47)

indicating that the short time limit of this theory is RDT. At long times and constant

strain rate S,

o 1 SK for t,.., oo e-CRe" s ds CR- ~ (48)

In shear flows nearly in a production equals dissipation steady state, SK/e ,_, 3.0; for flows

which evolve to this state, the modified total strain saturates after growing linearly for

short times. In the RDT solution for constant strain rate, the total strain grows linearly

for all times. The phenomenological modifications of RDT suppress this growth by forcing

saturation of the modified total strain. Here, this saturation is a consequence of Eq. (46).

Some obvious generalizations of this theory are to nonstationary problems and to gen-

eral wavenumber dependent damping models. Arguing by exact analogy to the stationary
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case,to developa nonstationary theory, it would be necessary to interpret the operator G

as a Volterra operator

= es

and to define the modified velocity gradient as the solution of a Volterra integral equation.

In view of the phenomenological character of the nonstationary Green's function, it seems

preferable just to generalize Eq. (46) directly as

= d8

When the stationary Green's function is k-dependent, the summation fails because

the k derivatives in the strata operator S also act on G(k, t - s). The direct generalization

of Eq. (46) for simple shear flow,

= 8)s(8) a8 (49)

therefore does not lead to an exact summation of Eq. (36). But inserting the wavenumber

dependent modified total strain of Eq. (49) in Eq. (45),

ui(k, t)= Mip(m, k, a*(k,t)),a *(k, t))up(k, 0) (50)

does at least sum terms of all orders in the strain rate in Eq. (36); it is therefore a plausible

approximate summation of this series. Eq. (50) brings about a generalization of the short

and long time limits of Eqs. (47) and (48): since G(k, t- s) ,,_ i for sufficiently large scales,

whatever the value of (t-s), the RDT solution for large strain rates can apply even at finite

times to sufficiently large scales. This idea is also stated in a similar context by Cambon et

al.15 However, for sufficiently small scales, G rapidly assumes its asymptotic eddy damping

form. Eq. (50) states a "two-scale" theory of shear turbulence in which large scales can be

governed by RDT while small scales exhibit the eddy damping characteristic of a steady

state Kolmogorov inertial range.

V. Approximate Theory of Highly Strained Flows

There have been recent proposals 11 to modify the standard eddy viscosity

t,T = C,,K_ /s, C,, ,_ .09 (51)
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to improve its behavior for large strain rates. These proposals all introduce functions

C_(_7) in Eq. (51), where in simple shear flow with Aij = $6i16j2, _7is the dimensionless

strain rate _7 = SK/_. This idea can be attributed to Yakhot et all0 who replace the

constant C_1 of the two equation model by a function C_1(_7). Applied to the nonlinear

eddy viscosity model of ¥oshizawa, 4 this approach suggests

_- K 2

K 3 16
+ e,.l(7?)---_[AipAjp - -3 ijAqpAqp] (52)

K 3 2 6
+ C,-2(_7)--_[AipApj + AjpApi - -_ ijAqpApq]

K 3 1 _ijAqpAqp]+ - 5

This equation, with constant C_, C_1, C_-2, and C,-z cannot be applied to flow regions, like

the near wall, in which 7/is large: it predicts that the stress ratios 7"ij/K all increase with _7,

completely contrary to the data, and even predicts that some of the normal stresses become

negative. These problems can be overcome if the functions of 7/in Eq. (52) are chosen

suitably. An early, and especially interesting model of this form was proposed by Pope 25

who solved the "algebraic" form of the LRR model due to Rodi 2s for two dimensional

mean _ow.

A model of this type can be derived for simple shear fiow under the additional hy-

pothesis that Eq. (48) defines a long time limit for any value of 7. It must be stressed

that this is an additional assumption; it is not a consequence of this theory. Analytically,

this assumption states that a* in Eq. (45) can be replaced by its formal long time limit,

_7/CR from Eq. (48), so that

Then

ui(k,t) = Mip(m(k, Ti/CR),rl/CR)up(k,O ) (53)

K 2

: (54)
g

where r = _'12 and the function C_(1/) is found from RDT as follows. By forming moments

and integrating over wavenumbers, Maxey 9 presents T/K graphically as a function of

a = St, say

r/K = F(a)

2O



Replace a by _?/CR as in Eq. (53);the resultis

r = KF(TI/CR) = -C_(rl) K2S
g

where

F( /CR)
-

_7

and the function F isknown from RDT. Note s that since F _ 0 when 7}_ so

(55)

0, ,

in agreement with the observation that strong shear suppresses the shear stress so that

r/K --, 0 when 7} is very large. Strain dependent coefficients Crl(TI),Cr3(_7) for Eq. (52)

are also easily obtained from Maxey's RDT results.

This theory helps explain a curious feature of homogeneous shear flow data: the ratio

r/K is about the same both in fully developed homogeneous shear flow in which T/_ 4.4

and in simple shear flows in energy equilibrium in which 7/,_ 3.0. Therefore, if the usual

formula Eq. (51) is written as

r/K = -Cur I

and is calibrated for equilibrium shear flows, it will predict a viscosity which is too large

in homogeneous shear flow. The data is summarized in Table I and compared with the

predictions of Eqs. (54)-(55). The theory predicts that r/K has approximately the same

value in both flows because in both flows rl/CR is near the maximum, at about a = 2, of

F(a) according to Maxey's RDT calculation, a

Table II compares r/K in near wall channel flow with the theoretical predictions.

Making this comparison invokes the suggestion of Lee et al24 that near wall turbulent states

are similar to highly strained homogeneous shear flow. As in the homogeneous shear flow

comparison, there is qualitative agreement with the trends, but the theory underpredicts

the reduction in v/K as ri increases. In both Tables, results for the theory with transport

corrections axe also listed. These arise as follows: transport effects (convection by the mean

flow and turbulent diffusion) are inhomogeneous effects which have been ignored in this

theory. Rodi's 26 algebraic transport correction is useful because it is model independent; a

rough way to incorporate it in this model is to reduce the viscosity by the factor C1/(C1 +
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P/s - 1) where C1 is the constant of the LRR model Eq. (31) and P is production. We

have set C1 -- 1.6 in applying this correction. It improves the agreement with the data in

some cases and greatly overcorrects in others; however, the comparisons are not meaningful

unless some correction for transport is made.

A referee has suggested comparison with Pope's explicit solution 25 of the algebraic

LRR model. Further comparisons with this model are given in Sect. VI. The comparison

shows that the algebraic LRR model also reduces the ratio r/K as 7? increases. The

constants of Ref. 25 have been used to make the comparisons. The quantitative agreement

could be improved by adjustments of these constants.

The quantitative limitations of the theory can be attributed to its basic assumption

that the large 77 states can be considered long time limits. It is more likely that highly

strained states are transient; although near wall flow can be steady in time, this steady

state is maintained by the continual diffusion of highly strained turbulence away from the

near wall production region into to bulk of the flow. From this (Lagrangian) viewpoint,

turbulence is highly strained only for a finite time. 16 The simplicity of models like Eq.

(52) makes them attractive, but they all assume the steady state character of highly

strained states. Therefore, they should not be accepted uncritically, although their value

in "regularizing" the stresses in large 7/flow regions will make them useful in calculations.

In Sects. IV and V, simple shear flow has been emphasized because an explicit RDT

solution exists for this flow. In principle, the constructions of these sections can be gener-

ali_.ed to any mean velocity gradient, but they will be explicit only when a corresponding

RDT solution is known. Thus, a theory of this type applicable to near wall calculations in

square duct flow will require solving RDT for a mean velocity gradient with the structure

[ OU1/Oxl OU1/Ox_ 0
OU2/Ozl OU2/Oz,_ 0
OU3/Ozl OU3/Oz,, 0

OVl OU2
+

0_1 Oz2
-0

It should not be assumed that superposing results for simple shear flows will provide a

good approximation, or that the results will depend on a single parameter like 7?. The

development of a more general theory, in which a rotational analog of the strain parameter

r/enters _-s is an interesting possibility.
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VI. Normal stressesand the one-component limit

The predictions of these theories for homogeneous shear flow in the limit of very large

are compared in Table Ill. It has been shown 24 that RDT predicts the initial evolution

of these flows very well. The tensor bij is defined as usual by bij = -'rij/2K + 1/36ij.

The line NLEV refers to the nonlinear eddy viscosity model, Eq. (52) with constant coef-

ficients C,,, C,q, C,-2, G,-3. The unphysical results are shown to motivate the introduction

of q-dependent coefficients; all derivations of this model 4,s have computed perturbatively

assuming that the strain rate is small. The results for the explicit algebraic LRR model

of Pope are shown using the notation of Ref. 25; b2 and b3 depend on the choice of model

constants. This model predicts a qualitatively correct shear stress ratio b12, however the

normal stress ratios are model dependent. By construction, Eq. (53) recovers the RDT

normal stresses, the one component limit. 24 It is more important that the present time

dependent theories, Eqs. (45) and (50) also predict this limit at short times. This fact

shows once more the importance of the short time corrections to RDT: even if the LRR

model could be calibrated for agreement with the one component state in the limit of

large _/, eddy damping would quickly drive the solution away from this state; the strong

suppression of eddy damping at short times in the present theory will maintain the RDT

limit longer.

The difference between the present theory and LRR can be understood by comparing

Eqs. (3) and (31): although the production term containing Aim is treated identically, the

"rapid pressure strain" term kikpApmk -_ is treated exactly in the present theory by RDT

but is modeled in LRR by the terms bilinear in stress and strain rate. Renormalization

group analysis 2r showed that the LRR model is a rational lowest order approximation for

the rapid pressure strain term; however, it is not valid for very large strain rates.

VII. Conclusions

The present theory should be compared to the LRR stress transport model and to

RDT. Both LRR and RDT arise from a special choice of the Green's function, correspond-

ing respectively to the long time and short time limits of the present theory. The present

theory reduces to RDT at short times and at large strain rates, and to an eddy damping

model qualitatively similar to LRR at long times.
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TABLE I

Shear Stress Ratios in Homogeneous Shear Flow

and in Equilibrium Simple Shear Flows

-r/K

7/,,, 3.O 77,-_ 4.4

Experiments .33 .33 &&

Theory .32 .32

AlgebraicLRR .37 .38 &&&

Theory with

transport corrections .32 .23 &

&

TABLE II

Stress Ratios in Near-Wall Turbulence

7/ -'r/K(DNS) _6 -_'/K(Theory) AlgebraicLRR -r/K(Corrected Theory)

6.6 .178 .274 .380 .246

8.4 .159 .237 .361 .195

9.6 .149 .216 .347 .170

10.9 .138 .183 .332 .139

12.5 .127 .161 .314 .117

14.0 .116 .146 .295 .105

TABLE III

Theoretical predictions in the large y limit

hi2 bll

NLEV O(_/2) O(r/s )

LRR O(7-1) 4 3bs-b_

Eq.(53) O(_7 -1) 2/3

RDT O(r/-1 ) 2/3

b22 b33

o(,7 o(,7
15 s 2 s s3bs-b 2 45 3bs-b 2

-1/3 -1/3

-1/3 -1/3
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